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for Parabolic Differential Equations whose 
Coefficients are Singular on the Boundary 

By Pierre Jamet 

I. Introduction. In a previous paper [6], S. V. Parter and the author have studied 
finite-difference methods for elliptic differential equations of the second order 
whose coefficients are singular on a portion of the boundary; the uniform con- 
vergence of the approximations and the existence of a solution of the Dirichlet 
problem were proved for a class of such equations. The present work is an exten- 
sion of those results to parabolic initial boundary-value problems. The class of 
problems that we consider includes the cases of nonhomogeneous differential equa- 
tions, of time-dependent coefficients, of time-dependent domains and of over-de- 
termined Dirichlet problems. 

Let G be a bounded (open) domain in Rn and let P = (xi, ***, x,n) denote an 
element of G. Let L be a differential operator of the form 

n 2 n 
LU = E a., d9 U + E br - _ cu. 

r,s=1 OXrOXs r=1 OX r 

The coefficients ars = a,s, br and c are functions of P; we assume that they are 
"smooth"* in the interior of G; but they may be singular, for instance be un- 
bounded, as P approaches the boundary aG of G. Moreover, we assume 

n 

(1.2) V ar5(P)($i _ 0, (t, **, n) 5? 02 VP e G, 
r,s=l 

(1.3) c (P) > 0 VP Cz G . 

The work in [6] was devoted to the elliptic case: 

n 
(1.4) E a,,(P)r, > 0 , V{ ... 

2 #n} =X 0, VP C G. 

In the present paper, we are primarily interested in the parabolic case: 

arn(P) = 0, r = 1,2, n 
n-1 

(1.5) ~~E ars(P)Urs > O, bt{i, .. *, (n_1} 0j O 
r,s=l 

bn(P) < O VP C G . 
In this case we shall write xn = t (time variable). However, for greater generality, 
we will take, at first, the operator L in the form (1.1) and we will only assume 
conditions (1.2) (1.3). 

Let P1 and P2 be two complementary subsets of dC; F1 - 0. Let f(P) be a 

Received December 4, 1967. 
* We need not specify now the degree of smoothness. 
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bounded function defined on G and which is "smooth" in the interior of G; let 
g(P) E C(G). We consider the differential equation 

(1.6) Lu = f 

and the boundary value problem 

Lu(P)=f(P), PEG, 

(1.7) u(P) = g(P), PE rF, 

u(P) E C2(G) nC(GU rF) nB(G), 

where B(G) denotes the space of all bounded functions on G. 
We say that (1.7) is a problem of "Dirichlet type"*. Of course, ri cannot be 

chosen arbitrarily if we want problem (1.7) to admit a unique solution; this choice 
depends on the type of the operator and on the singularities of its coefficients near 
the boundary. A simple example is the following: 

Let G C R2 be the triangle 0 < x < t < 2 and let 

d 2u t au au Lu- 2 + X x at 

Suppose f(P) E C3(G) n B(G). Then, problem (1.7) has a unique solution pro- 
vided we take: 

F, = {P - (x,t);O _ t = x ? 2} U {P = (O,t);O < t < 1} 

Problems of the type (1.7) have been studied by J. J. Kohn and L. Nirenberg 
[7]; these authors give results concerning existence, unicity and regularity of the 
solution; however, our hypotheses are different from theirs and, therefore, our 
existence and unicity theorems are also different. Finite-difference schemes for 
time-dependent problems with singular coefficients have been studied by D. Eisen 
[4]; this author studies the relations between stability and convergence, in the 
framework of the Lax-Richtmyer theory [11]. 

In Section 2 of the present paper, we recall the basic convergence and existence 
argument which was used in [6]; it is based on the notion of "discrete barrier"; the 
presentation is more general than in [6], which is necessary for the applications to 
a wider class of problems. Our fundamental Theorem 2.1 reduces the questions of 
convergence and existence to three independent questions which are studied in the 
three following sections: uniform boundedness of the approximations, interior 
equicontinuity and existence of local discrete barriers. Section 6 is devoted to 
the problem of unicity. Finally, Section 7 is an account of numerical experiments. 

II. Finite-Difference Schemes and Discrete Barriers. 
1. Generalities. Let h be a parameter (for instance an n-vector with positive 

components) and let G(h) be for each h a finite set of points in G with the following 
property: 

(2.1) sup d (P , 7G (h)) -G O as h O . PEGG 

* It is of no significance for this problem to know the values of f(P) on OG or the values of 
g(P) on G u r2. But we will need those values for the discrete analogue of this problem; they can 
be chosen arbitrarily. 

** We denote by d(E, E') the distance between two sets E and E' in Rn. 
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Let G(h) and OG(h) be two complementary nonempty subsets of G(h). We assume 
that 

(2.2) Max d (P, G) -O as h >+ O.* 
PE -G(h) 

To each point P C G(h) we associate a set (P) C G(h)- {P } which is called 
the set of neighbor points of P in G(h) and which satisfies 

(2.3) Max Max d (P, P') -> as h -> O . 
PEG(h) P'EM(P) 

We assume that, for h small, G(h) has the following "connectedness" property: 
V'P C G(h), 3 a sequence of points Po, P1, ***, Pr such that 

Po = P, 

(2.4) P1, P22 * * Pr-, E G(h), 

PrEz G(h), 

Pi+1 E 9Z(Pi),2 i = O, 1, .. * , (r -1 . 

Let v(P) be a function defined on G(h). At each point P G G(h), we define 

(2.5) Lhv(P) = -A(P,P)v(P) + E A(P,P')v(P'). 

We assume that, for h small, the operator Lh is of positive type, i.e., for all P E G(h) 

(2.6) A(P, P) > O; A(P,P') > O, VP' : Z(P), 

E (P) A A(P,P)- A A(P, PI) >_ O . 
P 'e9y(P) 

Under such hypotheses, the following maximum principle holds: let v(P) be any 
function defined on G(h) and such that Lhv(P) > 0, V P G G(h); then 

Max v(P) < Max {O, Max v(P) . 
P G G(h) P G aG(h) ) 

Now, we introduce some notations and definitions which will be used later. Given 
any subdomain G' of G, we define 

G'(h) {P C G(h) n G'}, 

(2.7) G'(h) {P E G(h) n G'; T(P) ? G'} 

OG'(h) = G'(h) - G'(h). 

Definition 2.1. Uniform consistency. Let G' C G. We say that Lh iS a uniformly 
consistent approximation to the operator L in G' if, Vp C C2(G'), 

Max ILhP(P)-LO(P)j >0 ash ->0. 
PEEG '(h) 

Definition 2.2. Discrete equicontinuity. Let G' C G and vY - {v(P; h) } be a 
family of mesh-functions defined on G(h) for each h. We say that the family 5T is 
equicontinuous in G' if, given any e > 0, there exists a constant -0 > 0 independent 
of h such that Iv(P; h) - v(P'; h)I < E, VP, P' C G'(h) such that d(P, P') < 7j. 

Definition 2.3. Discrete uniform convergence. Let G' C G. Let {v(P; h) 3 be a 

* It is important to observe that we do not assume G(h) n aG = 0. 



724 PIERRE JAMET 

family of mesh-functions defined on ?G(h) for each h and let u(P) be a function 
defined on G'. We say that v(P; h) converges uniformly to u(P) in G' as h -* 0 if 

Max Iv(P;h)-u(P)lI---0 ash -0. 
PEG'(h) 

Now, let us consider an infinite family { h } of parameters h, with zero as an ad- 
herence point, and the corresponding family {Lh} of operators. 

Definition 2.4. Discrete barrier. Let Q E 0G. A function B(P; Q) is a strong 
(local) discrete barrier at the point Q relative to the family {Lh} if there exists a 
neighborhood N of the point Q in the relative topology of G such that 

(2.8a) B(P; Q) E C(N), 

(2.8b) B(Q; Q) = 0, 

(2.8c) B(P;Q)<O, VPCN- {Q}, 

(2.8d) LhB(P; Q) - E(P) > 1, VP E N(h) and Vh small enough. 

Now we consider the following system of linear equations 

(2.9) LhV(P) = f(P), P E G(h), 

v (P)= g (P), P E OG (h) . 

It follows from our hypotheses that, for h small enough, this system has a unique 
solution v(P; h); this is a direct consequence of the maximum principle. 

THEOREM 2.1. Let a = {v(P; h) } be the family of the solutions of (2.9) for all h 
small enough. Let us assume 

(i) There exists a function + (P) E C(G) such that Lhq (P) > 1, VP E G(h) and 
for all h. 

(ii) For any G' CC G t and for any sequence { v(P; h.); h. -> 0} C aY, there exists 
a subsequence which converges uniformly in G' to a solution of Eq. (1.6). 

(iii) At each point Q E 17, there exists a strong (local) discrete barrier relative to 
the family { LhI }. 

Then, problem (1.7) has at least one solution u(P). Moreover, if this solution is 
unique, v(P; h) converges to u(P) as h -* 0, uniformly in G - N(T2) where N(T2) 
is an arbitrary neighborhood of r2. 

Proof. The proof of this theorem is a modification of the proof of Theorem 2.3 
in [6]. We shall concentrate mostly on those modifications and refer the reader to 
[6] for more details. 

We observe that assumption (i) implies the uniform boundedness in G of the 
family { v(P; h) }; this follows from the maximum principle and from the bounded- 
ness of f(P); we denote by M a uniform bound for lv(P; h) . Let Q E ri and let 
B(P; Q) be a strong discrete barrier at Q; let N be a neighborhood of Q for which 
conditions (2.8) are satisfied; we can write N = No n G where No is a neighbor- 
hood of Q in Rn. Let No' CC No be also a neighborhood of Q in Rn and let 
N' = No' n ?G. It follows from assumption (2.3) and definition (2.7) (applied to 
the subdomain N) that, for h small enough: 

(2.10) ON(h) C OG(h) U (N - N') . 

t G' C C G is an abreviation for G' C G' C G. We say that G' is an "interior" subset of G. 
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Let M' = Supp eN If(P) I; let e > 0 be arbitrary and let us consider the two func- 
tions 

(2.11) F(P) = g(Q)- + nB(P; Q) 

G(P) = g(Q) + e-qB(P; Q), 

where -q is so large that 

-o > Max {M', Jg(Q)[}, 
(2.12) F(P) _ g(P) < G(P), VP C N, 

F(P) <-M < M < G(P), VP E N-N' . 

It is easy to check that, for h small enough: 

LhF(P) > LhV(P; h) _ LhG(P), VP & N(h), 

F(P) < v(P; h) < G(P), VP E ON(h) . 

Therefore, using the maximum principle, we get 

F(P) < v(P; h) ? G(P), VP E N(h) . 

The rest of the argument is the same as in [6]. 
Remark. Theorem 2.1 holds, more generally, for all monotone finite-difference 

operators such that E(P) _ 0, VP & G(h). 
2. The parabolic case. In the following sections we will restrict our attention to 

the parabolic case (1.5); moreover we will assume ars- 0 if r 5z s. We assume that 
the coefficients of the equation and the function f(P) are in C??(G). All of what 
follows is valid for any n, but, to avoid complications in the notations, we will 
assume n = 3 and we will write: xi = x, X2 = y, X3 = t and 

(2.13) Lu - a u+ b + a' 2 + b' c -C d 

where a(P), a'(P), d(P) > 0 and c(P) > 0 for all P E G. 
Let h be a positive number and let us consider the square net 

R(h) = {P = (ih, jh, kh); i, j, k integers } .* 

To any point P = (ih, jh, kh) E R(h) we associate a set 9L0(P), which consists of 
the five points 

((i i 1)h, jh, kh), (ih, (j i 1)h, kh), (ih, jh, (k - 1)h) 

Let 9to(P) be the set of the five segments joining the point P to each of the points 
of XTo(P). We define 

G(h) = G nR(h) 2 

Go(h) = {P C G(h); STo(P) C G}, 
Fi(h) = {P C G(h) - Go(h); d(P, rl) < h } 

* For greater simplicity we consider a square net instead of a rectangular mesh; of course, 
this is not essential. 
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We choose r(h) and G(h) arbitrarily provided rP(h) C r(h) and Go(h) C G(h). 
Now, we must define the set 9X(P) and the operator Lh at each point P C G(h). 
We do this in the following way: at each point P ( G(h) - Go(h) we define T(P) 
arbitrarily provided 9m(P) n Go(h) F 4, and at each point P C Go(h) we take 
9L(P) = 9mo(P); this choice guarantees the "connectedness" of G(h) for h small. 
At each point P E G(h) - Go(h) we define Lh arbitrarily provided conditions (2.6) 
are satisfied at that point. At each point P E Go(h) the choice of Lh depends on 
the operator L; let vx, vi, v,, * * denote the usual forward and backward difference 
quotients of the function v; we define 

vx 
0+v a 

,vy+v (2.14) Lhv (P) = avXX, 2 + xvl, + 2 - 7yv - vt 

where the coefficients a, /, *, are functions of P and h, and are related to the 
coefficients of the operator L; here are two possible choices for those coefficients: 

First choice. 

a (P; h) = (P) 

(2.15) f3(P; h) =b (P) 

6 (P; h) =d(P) 

Second choice. For each P = (x, y, t) E Go(h), let 

xz+h12 b (z, yx, t) 
a+(P; h) = exp h/2 bz, y, t) dz 

TI/ b (z, y, t) a4 P; h) = exp j dz Y t 

a+h/2b'(x,z, t) 
a+' (P; h) = exp f / b(x z t) dz, 

(P; h) = exp fy-h/2 b' (x, z, t) d 
a-'(P; h = EIIXP a' (X, z, t) 

d 

and 

(P; h) =a (p) 4a(P; h) + ax (P; h) 
2 

(P; h) a a(P) a+(P; h) - a(P; h) 

(2.16) o h) = (P)(P; h) + h _(P; h) 

0'(P; h) = a'(P) a+ (P; h) +- '(P; h) 2 

-y(P;h) = (P) 

3(P;h) =d(P). 
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Of course, the choice (2.15) is more natural; it is also easier, except in particular 
cases for which the integrals above admit simple analytic, representations. How- 
ever, this choice is not always suitable, because we want the operator Lh to be of 
positive type for h small; this condition is not always satisfied for the operator 
corresponding to the choice (2.15): it depends on the behavior of the coefficients 
of the operator L near the boundary. On the contrary, the operator corresponding 
to the choice (2.16) is always of positive type; to see this, we observe that at each 
point P E Go(h) this operator can be written in the form 

(2.17) Lh,v(P) = a h ch- + a'v + h - - bvt 

where all the coefficients a, a+, ac, ***, a5 are nonnegative. 
We will need also the two following properties of the operator Lh, which are 

satisfied for both choices (2.15) and (2.16): 
(A) The operator Lh is a uniformly consistent approximation to L in any in- 

terior subdomain G' C C G. This follows from the relations 

ax(P;h) =a(P) + 0(1), 

(2.18) /3(P; h) = b(P) + 0(1), 

5(P; h) = d(P) + 0(1), 

which hold uniformly in G' for h small.* 
(B) Given any interior subdomain G' CC G and any positive integer p, all 

the difference quotients of order p of the coefficients a, ,B, *, a are uniformly 
bounded for all P E G'(h) and for all h sufficiently small. 

III. Uniform Boundedness in the Nonhomogeneous Case. In order to apply 
Theorem 2.1 to inhomogeneous problems, it is necessary to study the existence of a 
function +(P) which satisfies condition (i). The existence of such a function guaran- 
tees the uniform boundedness of the approximations v(P; h). We give here a few 
simple criterions for the existence of +(P). 

Let L be the operator (2.13). Let G(h) = Go(h) and let Lh be defined by formula 
(2.14) together with (2.15) or (2.16). 

1. First sufficient condition. Suppose c(P) > m > 0 in G, then there exists a 
function +(P) which satisfies condition (i) of Theorem 2.1. 

Proof. Take +(P) = - 1/m. 
2. Second sufficient condition. Suppose d(P) > m > 0 in G. Same conclusion. 
Proof. Take +(P) =-(K + tlm) where K > 0 is chosen so large that +(P) < 0 

in G. 
3. Third sufficient condition. Suppose a(P) > m > 0 and jb(P)j < M in G. 

Same conclusion. 
Proof. Take +(P) = K[exp(px) - K'], with p > Mlm and K, K' sufficiently 

large. 

* It is interesting to note that conditions (2.18) are also necessary for the uniform consistency 
of the operator Lh to the operator L in G'. 
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IV. Interior Estimates. Let Lh be a finite-difference operator of positive type 
which has the form (2.14) for all P C Go(h) and which satisfies properties (A) 
and (B) (see the end of Section II). Let 5Y = {v(P; h) } be a family of mesh-func- 
tions defined on G(h) for each h and such that Lhv(P; h) = f(P), VP E Go(h). 
Let i(X) be the family of all difference quotients of order p of the functions of 5:. 
Let G' be an arbitrary interior subdomain of G. 

THEOREM 4.1. If the family 9 is uniformly bounded in G, then it is equicontinuous 
in G'. Moreover, each family i(X) is equicontinuous in G'. 

This theorem is an extension to parabolic problems of a well-known theorem 
for elliptic problems, which is due to Courant, Friedrichs and Lewy [1]. These 
authors proved this theorem in the particular case of the Laplacian operator in 
two dimensions; more general proofs were given later by W. V. Koppenfels [8] for 
general elliptic operators in two dimensions and by C. Cryer [3] for elliptic op- 
erators in Rn. Those proofs are based on a discrete analogue of Sobolev's imbedding 
theorem (see [12]) which was first discovered by Courant, Friedrichs and Lewy in 
the case n = 2: let G' C C G and let A > n/2 be an integer; assume that the sums 
hn ZG' (h) w2(P; h) are uniformly bounded for all w(P; h) which are difference 
quotients of order u A of the functions of i:; then the family 5Y is equicontinuous 
in any subdomain G" CC G'. 

This theorem shows that we have only to prove the uniform boundedness of 
the sums h ZG' (h) w2(P; h). This proof is based on the discrete analogue of Green's 
formula (see Cryer [2]). To avoid complications, we will develop the argument only 
in the case n = 2, i.e., we consider only two independent variables x and t; it is 
clear that this argument which is only a modification of the argument used by 
Courant, Friedrichs and Lewy in the elliptic case, can be extended to Rn in the 
same way as in the elliptic case. 

Let h be so small that G'(h) C Go(h). Then, at each point P C G'(h), we have 

(4.1) Lhv- avx- + 3(vx + v-)/2 - yv -v = fv , 

where the coefficients a, ,B, -y and a satisfy conditions (2.18) and -y > 0. We shall 
assume a = 1, which is not a restriction. For h small enough, we have 

(4.2) O<m< a(P;h)<M, 

10(P; h)jj 1-y(P; h)jj jf(P; h)l < M, 

for all P C G'(h) and for some suitable constants m and M. We will assume that 
M is also an upper bound for 5Y and for any of the difference quotients of a, f, -y and 
f which will be used in the proof. It will be convenient to write LhV = L-v - v t 
where LO denotes the space-operator 

Lv4= avx- + 3(vx + v-)/2 -v . 

Let h be fixed (sufficiently small so that the preceding conditions are satisfied); 
following Courant, Friedrichs and Lewy, we consider an expanding sequence of 
concentric rectangles in G'(h), say { Qo, QI, * * I Qk, *. , QN}, such that 

Qk = {P = (x, t) - (ih, jh) C G' (h); ik -< i -< ik, jk < j < jk}, 

ik+n = ik - 1Q iank+l = i(k + h jk+1 -jk - S jkil = jkr +I 

We define Sk = QA; - Qk _1 and RAk = {P = (ih, jh) C Sk; i = ik or ik' I 
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First we prove the following lemma: 
LEMMA 4.1. For every function w(P) defined on G(h), the following inequality 

holds 

(m- K M)h2 2 
(wX2 + w2) _ 2h2 E E IwIlLhwI 

Qk-1 Qk-1 

1(4.3) + (aW2 aW2) + M(1 + )h 
2 

w2 
Rk Rkl1K A 

+ h 2 + 1 )( w2 + E w 

where K is any positive number and 1 ? k ? N. 
Proof. We will make the following convention: for any function w(P) defined 

on G(h), we denote 

w = wij = w(ih, jh), 

wj+j = wi+jij = w((i + 1)h,jh), 

wj+j = wi,j+j = w(ih, (j + I)h, * * ) 

i.e., we drop the first index each time it has the value i and the second one each 
time it has the value j. 

Using those notations, we define 

A(w) = a,+iW x2 + axwwx + (w/2)(,3w)x - (i3/2)wwr + yw2, 

i(w) = ai_,W-2 + a(-vWW + (w/2)(i3w)X - (3/2)wwt + yw2. 

Let jo < j < jo'. An elementary manipulation based on summation by parts gives 

h2 (Akw) + 1(w)) =-2h2 2 wLh0W 
i==io i=io 

+ [a1w2i x - a0wi0 + (h/2) (i3il + i3o)Ywjow il] 

+ [aCil'wi2- aCo'wi2o - (h/2) (oil, + - i(3)wi0'wil'] 

to 
_-2h2 E wLh0W + (a1ilw1il - aioW io) 

i=io 

+ (ail 'wj1 - a $0'wi ') 

+ h(M/2)'(W2% + W21 + W2i' + W2$'). 

Sumnaing from j = jo to j = jo', we get 

h2 (A (w) + A (w)) ? -2h2 ZZ wLhw 
Qo Qo 

(4.4) + aW w2 _ aW2) + hM ( W w2 + E w2) 
R1 Ro / R2 Ro 

Now, let io < i < io'. By summation by parts with respect to j, we get 

(4.5) h2 E (wt2 + wt2) =-2h2 , WW I + (W1 + w - Wjo- jo- ) 
j=jo j=jo 
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Using the identity 

hwt- Wt - wt = (Wt + wt) -2wt 

we deduce, for io < i ? io' 

jot jo. 
h2 EWWt-t = (wjo0wji, - wjwj) -2h E WW-t 

=J0 j=io 
1 30 

--2(w2jo + w2j, + w2jo' + w2j,') - 27 E wwt- 

Taking this inequality into (4.5), we get 

io (o 
h2 E (Wt2 ++W_2) ? 4h > ww2 ? 2(w1 + w2j'). 

J=jo J--J0 

Summing from i = io to i = i1, we get 

h E E (W+ wt2) < 4h E ww-t +2 2 w2. 
Qo Qo Si 

Multiplying this inequality by h/2 and adding (4.4), we get 

h E EA(W) + A(w) + h (Wt2 + W_2)] 

Qo 2~~~~~~~~~~~~~~~~ < - 2h2 w(Lh?w - Wt) + (Ea2 _ Saw2 
Qo H1fO 

+ h 2 ( 2 + E w )+ W2 , 

Hence 

h 2 Z(A(w) + aI(w)) <2h2 lwllLhwI 
(4.6) Q Qo 

+ ( aW2 aw2)+h(M/2 + 1)( w2+ Z w) 
2 

R 1 R o S, I S 

The next step of the proof is to estimate h2 L Q (W 2 + w-2) in terms of 
h2 > Qo (A(w) + A(w)). We have 

(4.7) h2 E Z (A(w) + A(w)) _ B + C + D + E, 
Qo 

where 

B = hS E E (ai+iwx2 + ai x2), 
Qo 

C = h2E E w(axwx + a-w)W, 
Qo 

h2 
D =-2 1 E w((iw)x - fw + (3w) -x wx) 

2 E= W(W+1ljX + w_i-A3) I 

E 2h2 > W >: 2 > 0. 
Qo 
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Using (4.2) we deduce 

B ? mh2 E E (w.2 + W_2) 
Qo 

0CI ? h2 M Z (wllwxlU + lwllw1l) 
Qo 

h2 w2 + K 2 (w2 + w_2) 
K Qo 2 Qu 

for any positive number K 

ID] I Mh2 E Z w2 
Qi 

Using those estimates we deduce from (4.7) 

(in - KM/2)h E E (wX2 + w_2) 
(4.8) Qo 

< h2 E E (A(w) + A(w)) + M (1 + 1/K)h2 E Z W2 
Qo Q] 

Lemma 3.1 follows directly from (4.6) and (4.8) and the obvious fact that the pre- 
ceding argument is valid for any k and not only for k- 1. 
We will need also the following: 

LEMMA 4.2. Let G" CC G' be an arbitrary interior subdomnain of G'. Suppose 
that w(P) satisfies for any rectangle Qk C G'(h) an inequality of the form 

h2 (wx2 + w2) < Mo( w2 _W2 2) 
(4.9) Qk-1 I?k RA-1 

+ Mlh(> W2 + E w2) + A2h2 E E W2 + q3 
Sk Sk-1 Qk 

where Mo, M1, M2, M3 are positive constants and where +(P) is a positive bounded 
function defined on G'(h). 

Then, we have an estimate of the form 

(4.1O) h2 Z Zw2 < Kh2 E E w2?+ KI 
G''(h) G (it) 

where the constants K and K' depend only on the constants Mo, M1, M2, M3, on the 
bound of the function +(P) and on the domains G' and G". 

Proof. The proof of this lemma is essentially contained in Courant, Friedrichs 
and Lewy [1]. It is based on a double summation of inequality (4.3). 

Proof of Theorem 4.1. Now that we have Lemmas 4.1 and 4.2, we are able to 
prove the theorem (in the case n = 2). First, we observe that, in the case n = 2, 
the discrete analogue of Sobolev's imbedding theorem is true if we assume only 
the boundedness of the sums h2 ZZG'(h) v2, h2 ZZG'(h) Vt2, and h2 ZZG 2(h) V2t 

(see Courant, Friedrichs and Lewy [1]). 
We will study separately each of these sums. 
(a) Boundedness of h2 ZZEG'(h) Vx Since Iv(P; h)I < M and ILhv(P; h)j - 

lf(P) I < M, VP E G'(h), it follows from Lemma 4.1 that the function w = v 
satisfies an inequality of the form (4.9). Applying Lemma 4.2, we deduce that the 
sums h2 EG' I (h) VY 2are uniformly bounded, where G", just as G', is an arbitrary 
interior subdomain of G. 
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(b) Boundedness of h2 ZZEG(h) Vt2. Let w = v$. We deduce from (4.1) 

LhW = f a-o$W$ - i((W + wi+1)/2) + -yviv+i. 

Therefore 

h2 E IE |w| jLhW < Mh 2 
E [|w? + |W|jw ?| + w2 ?W| + 2l|w| jws+ + M]+ . 

G'(h) G (h) 

Applying the inequalities 

jw< '2(1 w 2), 

jwl fwj < w2/2cK + KW$ /2, 

jwj jw*?1I ? w2/2 + W2+1/2, 

and using the previous result on the boundedness of h2 Z ZEG (h) W2, we deduce 

h2 2, ,I lwllLhwl < Em(K) + K(M2/2)h2 EZ Ej jw2 
G (h) G (h) 

where (Z(K) is some positive constant depending on M and K. Choose K such that 
m - K(M/2 + M2) > 0 and set this estimate into (4.3). We get an inequality 
of the form (4.9) and therefore we can apply Lemma 4.2 which shows that the 
sums h2 Z ZG' (h) V$ or h2 Z ZG (h) V$$ are uniformly bounded for any G' C C G. 
But, (4.1) yields 

Ivtl < MIvy-I + M(Ivxl ? Iv-$1)/2 + Mlvl + M. 

Therefore, the boundedness of the sums h2 EZG (h) v$2 and h2 ZEZG'(h) V$-$ im- 
plies the boundedness of the sums h2 ZEG'(h) Vt2 (or h2 ZEG'(h) Vt2) 

(c) Boundedness of h2 ZZEG'(h) vxt. Let w = vt. We deduce from (4.1) 

Lhw = f t- atV$ - / t(vx + v-)/2 - ytV 

= ft - (at/a)(f - f(vx + v-)/2 + yv + v-t) - ft(vx + ?v)/2 - ytV. 

Hence 

ILhwI < M(1 + M/m)(1 + lvl + (IvxJ + Iv-5I)/2) + (M/m)fv-t- 

Taking this inequality into (4.3) and applying the previous results on the bounded- 
ness of the sums h2 E vx 2 and h2 EI vt2 we deduce, as before, an inequality 
of the form (4.9) which by application of Lemma 4.2 ends the proof of (c) and of 
the interior continuity of the family iY. The interior equicontinuity of the families 
i(v) is proved in the same way, after differencing the finite-difference equation 
(4.1) p times. 

COROLLARY 4.1. Same hypotheses as in Theorem 4.1. Then, any sequence 
v(P; ha); hn -O-0} C i admits a subsequence which converges uniformly in G' to a 

solution of the differential equation (1.6). 
Proof. For h small enough, G' is covered by cubic cells of the mesh; by linear 

interpolation in those cells, we can extend the mesh-functions into continuous 
functions defined on G'. Thus, an equicontinuous family of mesh-functions is ex- 
tended into an equicontinuous family of functions defined on all of G'. The theorem 
follows by application of Ascoli's theorem to the families i, Vi() and Vi) and be- 
cause of our consistency assumption (2.18). 
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Remark. We have assumed that the coefficients of the differential equation are 
in C-(G). Indeed we do not need so much smoothness. The degree of smoothness 
which is needed in Corollary 4.1 depends on n. In particular, in the case n = 2, 
our proof of Theorem 4.1 shows that the family i is equicontinuous in any interior 
subdomain of G if we assume only Lipschitz-continuity of the coefficients and of 
the function f(P) in any interior subdomain of G; for the equicontinuity of the 
families i (1) and i (2) we need the assumption that the coefficients and the function 
f(P) admit Lipschitz-continuous derivatives of order 2 in any interior subdomain 
of G; if we do not assume so much, then we can only prove that the limit function 
is a weak solution of the differential equation (1.6); to prove this we use the fact 
that the operator Lh is a weakly consistent (see [6]) approximation to the operator 
L in any interior subdomain of G. Very general results concerning weak solutions 
of coercive parabolic problems and their numerical computation can be found in 
Raviart [10]. 

V. Existence of Discrete Barriers. Let L and Lh be the operators defined by 
(2.13) and (2.14). Throughout this section we consider a point Q = (xO, yo, to) on 
F1 and we study various types of local conditions on G and on Lh which guarantee 
the existence of a strong discrete barrier at Q. We assume that there exists a neigh- 
borhood N of Q such that G(h) n N C Go(h) foT h small enough.* 

(1) First sufficient condition. Assume that the coefficients of the operator L are 
uniformly continuous and that Lh is a uniformly consistent approximation to L 
in a neighborhood of Q.** 

Assume a(Q) > O*** and that there exists a nondegenerate sphere through Q 
whose intersection with G is the single point Q and whose center is not in the plane 
x = xo. Then, there exists a strong discrete barrier at Q. 

Proof. Let us take the origin at the center of the sphere and let 

s = X2 + y2 + t2 So = s(Q) = xo2 + yo2 + to2. 

Let k and p be positive constants and B(P; Q) = k(s-P - s6-P). This function 
obviously satisfies condition (2.8a, b, c). Moreover, we have 

LB(P; Q) = 2kps-p-2[2(p + 1)(ax2 + a'y2) - s(a + bx + a' + b'y - dt)] 

-cB(P; Q) . 

In a certain neighborhood N of Q we have a(P) > 2a(Q) > 0, X2 > 'Xo2, and 
therefore 

LB(P; Q) > 2kps-P-2[ (p + 1)a(Q)xo2 - s(a + bx + a' + b'y - dt)] . 

It follows that LB(P; Q) can be made arbitrarily large in N provided we choose 
k and p big enough. In particular we can choose k and p such that 

LhB(P; Q) - E(P) = LhB(P; Q) -y (P; h) 

= LB(P; Q) -c(P) + 0(1) > 1 in N, for h small enough. 

* For instance, this condition holds if N n P2 =0 or if we choose G(h) = Go(h). 
* * Observe that this condition is satisfied for the 2 operators LA corresponding to formulas 

(2.15) and (2.16). 
* * * The values of the coefficients at Q are defined by continuity. 
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Thus, B(P; Q) is a strong discrete barrier at Q. 
Remark. Of course, we get a similar condition by permutation of x and y. 
(2) Second sufficient condition. Assume that the coefficients of the operator L 

are uniformly continuous and that Lh is a uniformly consistent approximation to 
L in a neighborhood N of Q. Assume d(Q) > 0 and that there exists a nondegen- 
erate sphere through Q with radius R > (a(Q) + a'(Q))/d(Q), whose intersection 
with G n N is the single point Q and whose center lies on the half-line x = xo, 
y yo, t < to. Then, there exists a strong discrete barrier at Q. 

Proof. Let B(P; Q) be defined as before. Then 

LB(P; Q) > 2kps-P-1[dt - (a + bx + a' + b'y)]. 

Since the square bracket tends to Rd(Q) - a(Q) - a'(Q) > 0 as P -* Q, we see 
that LB(P; Q) can be made arbitrarily large in a neighborhood of Q provided we 
choose k and p large enough. It follows as before that B(P; Q) is a strong discrete 
barrier at Q. 

Remark. The condition on the radius R of the sphere is perhaps unnecessary; 
however, it is related to the results of Kohn and Nirenberg [7] who emphasized 
the influence of the radius of curvature at a "characteristic" point of the boundary, 
on the smoothness of the solution. 

(3) Third sufficient condition. Assume that there exists a neighborhood N of Q 
such that G n N lies in the half-space t > to. Assume that the coefficients of the 
operator L are bounded, except d(P) which may be unbounded, d(P) > k(t -to), 

o( < 1, k > 0. Let Lh be the operator corresponding to formulas (2.15) or to formu- 
las (2.16). Then, there exists a strong discrete barrier at Q. 

Proof. Let us take the origin at Q. 
Case 1. Suppose 0 < o( < 1. Let B(P; Q) = -X2 y- Ktl-', K > 0. Then 

LhB(P; Q) = -2( + Ox + ' + y) + Kd -(th) TyB(P; Q). 

But 

Kd (t-h) > Kd(1 - o)t-> Kk(1 - -) 

It follows that condition (2.8d) is satisfied if we choose K large enough. Then, 
B(P; Q) is a strong discrete barrier at Q. 

Case 2. Suppose o- < 0. Let B(P; Q) = -l - _ - Kt, K > 0. Then, for K 
large enough, B(P; Q) is a strong discrete barrier at Q (straightforward). 

(4) Fourth sufficient condition. Suppose that there exists a neighborhood N of 
Q such that G n N is a cylinder parallel to the t-axis. Let us write L -Lo-d(dlat); 
Lo is an elliptic space-operator whose coefficients may depend on t. Define Lho in 
the same way as LO, i.e., Lhv Lh0V - V-t 

Suppose that there exists a function Bo(P; Q) which does not depend on t and 
which is a strong discrete barrier for the family of space-operators Lho for any t 
such that It - toI < r, where r > 0 is a constant (independent of h). Suppose S(P) 
is bounded. Then, there exists a strong discrete barrier at Q for the family of 
operators Lh. 

Proof. Bo(P.; Q) satisfies the conditions 
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Bo(P; Q) = Bo(x, y; Q) E C(G f N), 

Bo(xo, yo; Q) = 0, 

Bo(x, y; Q) < 0, V(x, y) ` (xo, yo), 

Lh0Bo(P; Q) - E(P) ? 1, VP E N(h) and Vh small enough. 

Let B(P; Q) = KBo(P; Q) - (t - to)2, K > 1. 
This function satisfies conditions (2.8); therefore it is a strong discrete barrier 

at Q for the family of operators Lh. 
(5) Applications. By means of the fourth sufficient condition, all the results of 

[5] and [6] for elliptic operators LO are directly extended to the corresponding 
parabolic operators L = L?-d(a/at). 

Example 1. Let JI(x) be a convex function defined for all real x and such that 
14(x1) - j1(x2)l/Ix1 - X21 < M for all xi and x2 0 xi, where M is a positive con- 
stant. Let e be the curve Y _ y - ;1(x) = 0 in the plane t = 0. Let Go'be a 
bounded simply-connected plane domain whose boundary consists of a portion of 
e and of a smooth curve which lies entirely in the region Y > 0. Let G = 

Go X (0, T) be a cylinder and G, = G n {P = (x, y, t); Y > e} Let F2 
{P (x, y, T) Ez GI and rJ' = OG - r2. Let 

a2 a2 ( 
(5.1) L - ax2 + -y + b + b' - 

aX4y2 a71 o at' 
where 

b(P), b'(P) Ez c(?Gf) nCC0?(G), b> o, 

(5.2) [b2(P) + b'2(P)]2 < k/Y+ K, VP E G 

O<k<min{1,2/M}, K>O. 

Let Lh be the operator defined by formulas (2.14) and (2.15). Conditions (5.2) 
imply that this operator is of positive type. Let v(P; h) be the solution of (2.9). 

THEOREM 5.1. Under the above hypotheses, problem (1.7) has a unique solution 
u(P) and v(P; h) converges uniformly to u(P) in G as h -O 0. 

Proof. Let Q - (xO, yo, to) E aG be such that (xO, yo) E e and let 
Bo(P; Q) = -(x- XO)2 - Yl-k, where k < k' < 1. The function Bo(P; Q) has 
the properties required for the application of our fourth sufficient condition (see 
[5, p. 121]). The existence of a discrete barrier at the other points of r1 follows 
from our first and second sufficient conditions. The existence of a function ?(P) 
satisfying condition (i) of Theorem 2.1 follows from our second sufficient condition 
in Section III. Unicity follows from the maximum principle for parabolic operators 
(see Lemma 6.1). So, we can apply Theorem 2.1. 

Particular cases. e is the x-axis and 

(2 92 o ( 

(5.3) L =-+_ 2+ - ff+ ff - - - < 1, 

or 

(2 
2 49 (5.4) L 2a a -a a 
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COROLLARY 5.1. Let Go be a "regular"* convex plane domain in the plane t = 0 
and let G = Go X (0, T). Let F2 = {P = (x, y, T) C aG} and IF = aG - F2- 

Let L be the operator (5.1) where 

b(P), b'(P) C C??(G), 

(5.5) [b2(P) + b'2(P)]1"2 < k/d(P, aG) + K, VP C G 
O < k < 1/V/2 , K > O. 

Let Lh be the operator defined by (2.14) and (2.15) and let v(P; h) be the solution of 
(2.9). Then, problem (1.7) has a unique solution u(P) and v(P; h) converges uni- 
formly to u(P) in G as h -O 0. 

Proof. Same as for Theorem 5.1. 
Example 2. Let G be the same domain as in the particular cases above. Let 

(2 
(2 a 

(5.6) L y + + , <1 (5.6) L = Y da 2 + a 2 + ay -a - aa l I(I < 
ax ay Y ( ay 

or 
2 2 

(5.7) L= a 
+ 2+ a - a <i. y ax ay2 yay at 

And let Lh be either of the operators defined by formulas (2.14) and (2.15) or by 
formulas (2.14) and (2.16). Then, the conclusion of Theorem 5.1 holds. 

This is a direct consequence of our fourth sufficient condition and of the results 
of [6, Theorems 4.1-4.4]. 

Remark. The preceding conditions for the existence of discrete barriers are only 
examples; we can imagine many other conditions; it seems impossible to gather all 
these conditions in a unique general condition. 

VI. Unicity. Again G is a domain in R3 and L is the operator (2.13). We denote 
by r, the set of all points Q = (xO, yo, to) E aG which admit a neighborhood N 
such that aG n N lies in the plane t = to and G n N lies in the half-space t < to; 
P" is called the set of "final" points of G. 

LEMMA 6.1. Suppose r2 C F'. Then problem (1.7) has at most one solution. 
Proof. By the maximum principle. 
We deduce at once the following 
COROLLARY 6.1. A necessary condition for the existence of a solution of problem 

(1.7) for arbitrary g(P) E C(G) is r c r2. 

From now on we will assume F' C F2 and we define F" = F2 - F'. The fol- 
lowing lemma is a generalization of an idea which has been used by S. V. Parter 
[9, ?4] for generalized axially symmetric potentials. 

LEMMA 6.2. Suppose F" is closed and suppose that there exists a neighborhood 
N of F" and a function U(P) such that 

U E C2(Go) n C(Go-o F) where Go = G n N, 

(6.1) LU(P) _O,a P Q VGo Q , 

U(P) >+ oo as P - ,Q, VQ Ert F, P c ?- r - 

* By "regular" we mean that in the neighborhood of any point QO E OGo, 0Go admits a 
representation of the form y = +(x) or of the form x = t(y) where 0 and Vf are convex functions. 
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Then, problem (1.7) has at most one solution. 
Proof. We can, of course, suppose U(P) > 0 since it is always possible to make 

it so by addition of a sufficiently large positive constant. Let z(P) be a solution of 
the homogeneous problem associated to (1.7), i.e. 

Lz(P)=O, PECG, 

(6.2) z(P) = o, P E F, 

z E C2(G) n C(G U po) n B(G). 

Let CO = SUPPEG-GO z(P) and suppose Co > 0. Let aGo be the boundary of Go. 
It follows from the maximum principle that there exists Po E aGo n G such that 
z(Po) = Co. Let C1 = SUPPEGO z(P). Let N' be an arbitrary neighborhood of IF" 
such that N' C N and let C2 = Sup PEGO-N' U(P). 

Let a be a positive number and Ua = Co + aU. For any a > 0, there exists a 
neighborhood of IF", N" C N' such that Ua(P) > C1 in N" n G. Let G, = Go - N" 
and let aG, be the boundary of Gi. It follows from the definitions of CO and C1 
that z(P) < Ua(P) on 3G, - F'. Therefore, by the maximum principle z(P) < 
Ua(P) in Gi. In particular, by definition of C2 z(P) < Ua(P) ? Co + aC2 in 
Go - N'. 

Since a is arbitrary, we deduce z (P) < Co in Go - N' and since N' is arbitrary, 
z(P) < Co in Go. Herice, by definition of Co z(P) ? Co in G. 

But at Po E G, we have z(Po) = CO. Therefore, by the maximum principle 
z(P) -Co > 0 in G. This is a contradiction of (6.2) since z(P) = 0 on F1. There- 
fore, we must have Co ? 0, which implies z(P) ? 0 in G, since N can be arbitrarily 
small. We deduce the reverse inequality in the same way and finally z(P) _ 0, 
which ends the proof of the lemma. 

THEOREM 6.1. Let G1, 02, , G2, ..r , G, be a finite partition of G into sub- 
domains of the form Gr = G nl r where Ir is a slab tr < t < tr+-. Let Fr" be the 
closure of F" fl Ir and suppose that for each r there exists a neighborhood Nr of Fr" 
and a function Ur(P) such that 

Ur E C2 (Gr0) n C(G0r - Fr//) where Gro = Gr f Nr, 

(6.3) LUr(P) ?_ ?, P E Gro, 

Ur(P) + o? as P -. )Q, VQ EF", P E Gr0Fr" 

Then, problem (1.7) has at most one solution. 
Proof. Apply Lemmas 6.1 and 6.2. 
Now, we give an example of application of Theorem 6.1. 
THEOREM 6.2. Suppose G lies in the half-space x > 0 and let L be the operator 

(2.13). Let I be a slab t1 < t < t2 and assume that there exists a constant K > 0 such 
that b(P)/a(P) > 1/x - K for all P = (x, y, t) E0 Gfn I, x small enough. 

Let IF" = aG n I n {P = (0, y, t) }. Then, problem (1.7) has at most one 
solution. 

Proof. Let U(P) = -Kx- Log x. We have 

LU(P) = a(P)/x2 - b(P)(K + 1/x) 

< a(P)[1/x2 - (l/x - K)(K + 1/x)] 

- -K2a(P) < 0 in G nl I and for x small enough. 
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Therefore, the assumptions of Theorem 6.1 are satisfied. 
Examples. 

o2u 32u r(~t) u au Lu _ a2 + 2 +( 
ax ay x ax at 

or 

L 2 au 2 
+ [o-(t)] aU au 

Lu - 2+ 2 
ax2 a ax at 

with o-(t) > 1 for tI < t < t2. 
The following theorem is closely related to Theorem 6.1. It can be proved in 

the same way. 
THEOREM 6.3. Suppose G lies in the half-space t > 0 and let Fo be the portion of 

the boundary aG which lies in the plane t = 0. Let L be the operator (2.13) and let 
IF" = Fo. Assume that there exists a neighborhood N of Fo and a function U(P) such 
that 

U C C2(G0) nC(G?- Fo), where G = GnN, 
LU(P)_<0 PGO , 

U(P) - + oo as P -* Q , VQ (E rO , P (E GO - rO. 

Then, problem (1.7) has at most one solution. 
Example. See Section 7, Example 2. 

TABLE I 

N = 1/h vi(P, h) V2(P, h) v3(P, h) v4(P, h) 

4 0.3245 0.3302 0.3231 0.3270 
8 260 305 275 279 

16 274 307 295 288 
32 285 309 304 294 
64 292 310 308 299 

128 297 310 309 302 
256 300 310 310 304 
512 303 311 310 306 

u(P) 0.3311 

VII. Numerical Experiments. 
(1) First example. First, we study the example given in the introduction. G is 

the triangle 0 < x < t < 2 and 

Pi = {P = (x,t);0 < t = x < 2} U {P = (0,t);0 < t <1}. 

We consider the problem 

(2 Ou t au Ou 
Lu- 2+ -1 inG, 

(7.1) ox x ox ot 
u = 0 onF1, 

u C C2 (G) nfC(GU Fp) nfB(G) 
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The uniqueness of the solution follows from Theorem 6.2. To compute this solu- 
tion (and prove its existence) we will consider four different schemes. Let h = 1/N, 
N integer; we define 

R(h) = {P = (ih, jh); i, j integers}, 

G (h) = G nR(h), 
rP(h) = riln R(h), 

F2(h) = Fr n R(h) where IF" = {P = (0, t); 1i<,t _ 2} 

Go(h) = {P = (x, t); O < x < t 2}i nR(h). 

Thus, G(h) = Go(h) U Fi(h) U F2(h). 

TABLE II 

k, 0 29/128 

L 127/ 1. 
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At each point P E Go(h) we define 

Lhv(P) -vxx + (t/x)(vx + vx)/2 - Vt. 

Scheme 1. We take G(h) = Go(h), dG(h) = rJi(h) U r2(h), g(P) = 0 on r2(h). 
Then, the discrete analogue of problem (7.1) is 

(7.2) Lhv(P) =-1, P E Go(h), 

v(P)=O, PErJ(h)UJr2(h) . 

Scheme 2. We take G(h) = Go(h) U r2(h), dG(h) = r1(h), Lhv(P) - vx 
if P Ez r2(h), f(P) = 0 on r2(h). Then, the discrete analogue of problem (7.1) is 

LhV(P) = -1, PeGo(h) 

(7.3) v(P) = 0, P Ez r(h), 

vx(P)=0, PEzr2(h). 

Scheme 3. Same as Scheme 2, except that we take f(P) = 1 on r2(h). Then, we 
have 

Lhv(P) = -1, P E Go(h), 
(7.4) v(P) = 0, P Ez r'(h), 

vx(P) =1, PEr2(h). 

Scheme 4. We take G(h) = Go(h) U r2(h), 9G(h) = r1(h), Lhv(P) = 

Vj- 2vo0 if P = (0, jh) Ez r2(h), f(P) = 0 on r2(h). Then, we have 

Lhv(P) = -1, P E Go(h), 
(7.5) v(P) = 0, P EJ r(h), 

vlj-2voj = 0, P = (O, jh) E r2(h) . 

The four schemes are of positive type. The function +(P) = x- t - 1 satisfies 
condition (i) of Theorem 2.1; the existence of discrete barriers at the points of i 
follows from the first and fourth conditions of Section V. Therefore, we can apply 
Theorem 2.1. The four schemes (7.2), (7.3), (7.4) and (7.5) converge to the unique 
solution of problem (7.1), uniformly in any Gf = G - {P = (x, t); t > 1 - 
0 <x < E}i* 

Table I shows the convergence at the point P(1, 2) of the functions v8(P; h), 
s = 1, 2, 3, 4, corresponding to each of the foregoing schemes.** 

It appears that Scheme 2 is the best; this is related to the observed fact that 
the solution u(P) satisfies du/dx = 0 on r17. A closer examination of the results 
shows that the convergence of this scheme is uniform in G except for a neighbor- 
hood of the point (1, 1); of course, we cannot expect better than that since u(P) 
is not continuous at this point. 

* A direct application of Theorem 2.1 requires that we exclude also a neighborhood of the 
line t = 2. But, of course, we can extend the domain G for t > 2 in such a way that the operator 
remains of positive type and the "final" points of G (on the line segment t = 2, 0 < x < 2) 
become interior points. Applying Theorem 2.1 to this extended domain, we deduce that the con- 
vergence in the domain G is uniform up to t = 2. 

** The author is indebted to Mrs. F. Glain for the numerical computations. 
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Scheme 3 is not as good as Scheme 2; but the convergence is again uniform in 
G except for a neighborhood of the point (1, 1), despite the, fact that we try to 
impose a wrong condition on the derivative au/ax on rI". 

Schemes 1 and 4 converge also, but the convergence is not uniform in the 
neighborhood of r17; in Scheme 1 we try to impose wrong values to the function 
u on r17; in Scheme 4 we use a meaningless condition.* 

Table II represents the solution u(P). The values of u(P) are not known ac- 
curately near the point (1, 1) where this function is discontinuous 

(2) Second example. Let G be the rectangle: 0 < x < 1, 0 < t < T, where T 
is some positive number, and let ri be the three sides of the rectangle: x = 0, 
x = 1 and t = 0. Let o- be a real number. We consider the problem 

Lu-a2u 
,au 

-i mG LU-- 2 -tadt = -1 inG, 

(7.6) u = OonFr, 

u E C2(G) n C(G U r) n B(G) . 

We define RI(h) as usual, r1(h) =ri nR (h), G(h) = ( r - 1i) R I(h) and 
Lhv (P) = vxx - t'V7t. 

TABLE III 

OJ 2~~ 

0 sX.7 s o O 0.25 ?-5?2 0.75I t 

* Other types of finite-difference schemes with "wrong" boundary conditions have been 
studied by S. V. Parter [9'] and by H.-O. Kreiss and E. Lundqvist [8']. 
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The discrete analogue of problem (7.6) is 

(77) Lhv(P) =-1, P E G(h), 

v(P) = O, P E 11(h) . 

This scheme is of positive type; the function +(P) = x2 satisfies condition (i) of 
Theorem 2.1; if c- < 1, we can apply our third sufficient condition for the existence 
of barriers (Section 5); if c- > 1, we can apply Theorem 6.3 with U(P) = -x2 

Log t. It follows that 
if c- < 1, problem (7.6) has a unique solution; 
if 0T > 1, problem (7.6) has no solution: a solution of the differential equation 

is uniquely determined by the boundary-values at x = 0 and x 1; we can impose 
no initial condition. 

Table III represents the solution as a function of t for x = 2 and for CT = 2, 0, 
- --,1. When t -o, u(x, t) > 2x(1-x). 

For CT ? 1, the solution determined by the boundary values alone is: 
u(x, t) - Ax(1 - x). 

TABLE IV 

N - l/h V(P, h) 

16 0.12181582 
32 0.12489043 
64 0.12499968 

128 0.12500000 
256 0.12500000 

The numerical experiments show that the convergence is of the order of h for 
CT < 1. In the case CT > 1, the convergence is incredibly fast even though we start 
with wrong initial values; this fact is illustrated by Table IV which gives the 
values computed at x = 1, t = 1/16 in the case o- = 1.5 for different values of 
h = 1/N. 
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